简 历:
2024年10月 — 今:中国科学院计算技术研究所,副研究员
2022年8月 — 2024年9月:九坤投资,AI LAB,研究员
2020年9月 — 2022年8月:华为-北京研究所,诺亚方舟实验室,主任研究员(Principal Researcher)
2017年9月 — 2020年9月:华为-香港研究所,诺亚方舟实验室,高级研究员(Senior Researcher)
2012年1月 — 2017年8月:美国雪城大学(Syracuse University),电子与计算机工程专业,博士
2015年1月 — 2016年8月:美国雪城大学(Syracuse University),数学专业,硕士
2006年9月 — 2010年7月:北京理工大学,信息与电子学院,本科
主要论著:
期刊文章:
[1] Shaokang Dong, Hangyu Mao, Shangdong Yang, Shengyu Zhu, Wenbin Li, Jianye Hao, Yang Gao, WToE: Learning When to Explore in Multiagent Reinforcement Learning, IEEE Transactions on Cybernetics, 2024.
[2] Zhuangyan Fang**, Shengyu Zhu**, Jiji Zhang, Yue Liu, Zhitang Chen, Yangbo He, Low rank directed acyclic graphs and causal structure learning, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024. (** equal contribution)
[3] Ran Chen, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., A unified framework for layout pattern analysis with deep causal estimation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2023.Zitong [4] Lu, Zhi Geng, Wei Li, Shengyu Zhu, Jinzhu Jia, Evaluating causes of effects by posterior effects of causes, Biometrika, 2022.(统计学四大期刊)
[5] Zhuangyan Fang, Yue Liu, Zhi Geng, Shengyu Zhu, Yangbo He, A local method for identifying causal relations under Markov equivalence, Artificial Intelligence (AIJ), 2022.
[6] Shengyu Zhu, Biao Chen, Zhitang Chen, and Pengfei Yang, Asymptotically optimal one- and two-sample testing with kernels, IEEE Transactions on Information Theory (TIT), April 2021.
[7] Shengyu Zhu and Biao Chen, Distributed detection in ad hoc networks through quantized consensus, IEEE Transactions on Information Theory (TIT), August 2018.
[8] Shengyu Zhu and Biao Chen, Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers, IEEE Transactions on Signal Processing (TSP), April 2016.
[9] Ge Xu, Shengyu Zhu, and Biao Chen, Decentralized data reduction with quantization constraints, IEEE Transactions on Signal Processing (TSP), April 2014. (corresponding author)
会议文章:
[1] Ruiqi Zhao, Lei Zhang, Shengyu Zhu, Zitong Lu, Zhenhua Dong, Chaoliang Zhang, Zhi Geng, Yangbo He, Conditional counterfactual causal effect for individual attribution, UAI, 2023. (spotlight)
[2] Xiaoyu Tan, LIN Yong, Shengyu Zhu, Chao Qu, Xihe Qiu, Xu Yinghui, Peng Cui, Yuan Qi, Provably Invariance Learning without Domain Information”, ICML, 2023.
[3] Yong Lin, Shengyu Zhu, Lu Tan, Peng Cui, ZIN: When and how to learn invariance without environment partition?, NeurIPS, 2022. (spotlight; corresponding author)
[4] Junlong Lyu, Zhitang Chen, Chang Feng, Wenjing Cun, Shengyu Zhu, Yanhui Geng, Zhijie Xu, Para-CFlows: C^k-universal diffeomorphism approximators as superior neural surrogates, NeurIPS, 2022.
[5] Xiaopeng Zhang, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., RCANet: Root cause analysis via latent variable interaction modeling for yield improvement, IEEE International Test Conference (ITC), 2022.
[6] Xinwei Shen, Shengyu Zhu, Jiji Zhang, Shoubo Hu, Zhitang Chen, Reframed GES with a neural conditional dependence measure, Conference on Uncertainty in Artificial Intelligence (UAI), 2022.
[7] Ruoyu Wang, Mingyang Yi, Zhitang Chen, Shengyu Zhu, Out-of-distribution generalization with causal invariant transformations, IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), June 2022. (corresponding author)
[8] Iganvier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, Jun Wang, Masked gradient-based causal structure learning, SIAM Conference on Data Mining (SDM), May 2022. (corresponding author)
[9] Ran Chen, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., A unified framework for layout pattern analysis with deep causal estimation, IEEE/ACM International Conference On Computer Aided Design (ICCAD), November 2021.
[10] Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao, Jun Wang, Ordering-based causal discovery with reinforcement learning, International Joint Conference on Artificial Intelligence (IJCAI), July 2021. (corresponding author)
[11] Shengyu Zhu, Ignavier Ng, and Zhitang Chen, Causal discovery with reinforcement learning, International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020. (highest review score and oral presentation)
[12] Shengyu Zhu, Biao Chen, Pengfei Yang, and Zhitang Chen, Universal hypothesis testing with kernels: Asymptotically optimal tests for goodness of fit, International Conference on Artificial Intelligence and Statistics (AISTATS), Naha, Okinawa, Japan, April 2019.
[13] Shengyu Zhu and Biao Chen, Distributed detection over connected networks via one-bit quantizer, IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, July 2016.
[14] Shengyu Zhu and Biao Chen, Distributed average consensus with bounded quantization, IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, July 2016.
[15] Shengyu Zhu, Mingyi Hong, and Biao Chen, Quantized consensus ADMM for multi-agent distributed optimization, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016.
[16] Shengyu Zhu and Biao Chen, Distributed average consensus with deterministic quantization: an ADMM approach, IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, December 2015. (IEEE travel grant)
[17] Shengyu Zhu, Ge Xu, and Biao Chen, Are global sufficient statistics always sufficient: the impact of quantization on decentralized data reduction, Asilomar Conference on Signals, Systems, and Computers (Asilomar), Monterey, CA, November 2013. (invited paper)
[18] Shengyu Zhu and Biao Chen, Data reduction in tandem fusion systems, IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Beijing, China, July 2013.
[19] Shengyu Zhu, Earnest Akofor, and Biao Chen, Interactive distributed detection with conditionally independent observations, IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April 2013.
专利:
[1] “一种通信网络故障的根因定位方法及相关设备”,授权,CN113923099B(对应SDM’22论文)
[2] “一种通信方法及通信装置”,实质审查,CN116192330A (对应INFOCOM投稿论文)
[3] “一种数据处理方法及相关设备”,实质审查,CN115905932A (对应CVPR’22 论文)
[4] “一种芯片故障识别方法及相关设备”,授权,CN113657022B,(对应ICCAD’21 和TCAD’22论文)
[5] “缺陷根因确定方法、装置和存储介质”,实质审查,CN115238641A(对应ITC’22 论文)
科研项目:
获奖及荣誉:
优秀审稿人(Top Reviewer),UAI,2023
产品线重大挑战问题攻关奖(团队),2012 实验室,华为,2021
商业贡献奖(团队), 诺亚方舟实验室,2012 实验室,华为,2021
“计算系统理论与技术委员会”优秀团队奖,2012 实验室,华为,2021
优秀实践奖(因果学习研究), 2012 实验室,华为,2020
创新先锋一等奖,2012 实验室,华为,2020
总裁个人奖,网络产品线,华为,2019
优秀博士毕业生(All University Doctoral Prize),美国雪城大学,2018
朱胜宇 副研究员
研究方向:
所属部门:智能算法安全重点实验室
导师类别:
联系方式:zhushengyu@ict.ac.cn
个人网页:https://zhushyu.github.io/