严明玉  副研究员  

研究方向:

所属部门:高通量计算机研究中心、处理器芯片重点实验室

导师类别:硕导

联系方式:yanmingyu@ict.ac.cn

个人网页:https://mingyuyan-ict.github.io/MingyuYan-ICT/

简       历:

长期专注于高通量众核处理器架构设计、图智能算法软硬协同优化以及处理器芯片智能化设计等研究方向,作为核心骨干参与了多款成功流片的高通量众核处理器芯片的研制。以第一或通信作者在PIEEE、MICRO、HPCA、AAAI、IJCAI和Neural Networks等领域顶级会议与期刊上发表论文30余篇,其研究成果被发表在ISCA、MICRO、HPCA、ASPLOS、NeurIPS、ICML及PIEEE、IEEE TPAMI、IEEE TPDS等领域顶级会议与期刊的论文广泛引用。作为项目负责人或核心骨干,主持或参与了多项国家级科研任务,包括国家重点研发计划项目、国家自然科学基金青年项目和中国科学院先导C专项等。入选中国科学院青促会会员、CCF青年人才发展计划,并曾获得北京市技术发明一等奖、北京市优秀毕业生等多项重要奖项,其博士论文被评为CCF优秀博士学位论文。曾担任ISCA、HPCA、MICRO、ICS和IJCAI等领域顶级会议的TPC或ERC委员,并受邀为IEEE TPAMI、IEEE TPDS、IEEE TC和ACM TACO等领域顶级期刊的审稿专家。指导/联合指导的研究生连续四年荣获国家奖学金,毕业后就业于中科院计算所、华为、平头哥、英伟达、字节跳动、腾讯、百度等知名机构。

工作与学习简介:

2022年9月 — 今:中科院计算所,副研究员(入选中科院青促会成员)

2020年7月 — 2022年9月:中科院计算所,特别研究助理(获中国科学院“特助”资助项目资助),合作导师为范东睿研究员

2014年9月 — 2020年7月:中国科学院大学,中科院计算所,博士生(博士论文入选CCF优秀博士学位论文),导师为张志敏研究员

2018年1月 — 2020年2月:美国加州大学圣塔芭芭拉分校,电子与计算机工程系,联合培养博士,合作导师为谢源教授

主要论著:

期刊文章:

[1] [PIEEE/CCF A] Haiyang Lin, Mingyu Yan*, Xiaochun Ye, Dongrui Fan, Shirui Pan, Wenguang Chen, Yuan Xie. “A Comprehensive Survey on Distributed Training of Graph Neural Networks.” Proceedings of the IEEE (PIEEE), 2023.

[2] [IEEE TPDS/CCF A] Runzhen Xue, Dengke Han, Mingyu Yan*, Mo Zou, Xiaocheng Yang, Duo Wang, Wenming Li, Zhimin Tang, John Kim, Xiaochun Ye, and Dongrui Fan. “HiHGNN: Accelerating HGNNs through Parallelism and Data Reusability Exploitation.” IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), 2024.

[3] [IEEE TC/CCF A] Gongjian Sun, Mingyu Yan*, Duo Wang, Han Li, Wenming Li, Xiaochun Ye, Dongrui Fan, Yuan Xie. “Multi-node Acceleration for Large-scale GCNs.” IEEE Transactions on Computers (IEEE TC), 2022.

[4] [IEEE TCAD/CCF A] Duo Wang, Mingyu Yan*, Yihan Teng, Dengke Han, Xin Liu, Wenming Li, Xiaochun Ye, and Dongrui Fan. “MoDSE: A High-Accurate Multi-Objective Design Space Exploration Framework for CPU Microarchitectures.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE TCAD), 2023.

[5] [ACM TACO/CCF A] Dengke Han, Mingyu Yan*, Xiaochun Ye, and Dongrui Fan. “Characterizing and Understanding HGNN Training on GPUs.” ACM Transactions on Architecture and Code Optimization (ACM TACO), 2024.

[6] [Neural Networks/SCI 1区] Xin Liu, Xunbin Xiong, Mingyu Yan*, Runzhen Xue, Shirui Pan, Songwen Pei, Lei Deng, Xiaochun Ye, and Dongrui Fan. “DropNaE: Alleviating irregularity for large-scale graph representation learning.” Neural Networks (NN), 2024.

[7] [IEEE/CAA JAS/SCI 1区] Xin Liu, Mingyu Yan*, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan. “Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey.” IEEE/CAA Journal of Automatica Sinica (IEEE/CAA JAS), 2021.

[8] [IEEE CAL] Mingyu Yan, Mo Zou, Xiaocheng Yang, Wenming Li, Xiaochun Ye, Dongrui Fan, Yuan Xie. “Characterizing and Understanding HGNNs on GPUs.” IEEE Computer Architecture Letters (IEEE CAL), 2022.

[9] [IEEE CAL] Haiyang Lin, Mingyu Yan*, Xiaocheng Yang, Mo Zou, Wenming Li, Xiaochun Ye, Dongrui Fan. “Characterizing and Understanding Distributed GNN Training on GPUs.” IEEE Computer Architecture Letters (IEEE CAL), 2022.

[10] [IEEE CAL] Mingyu Yan, Zhaodong Chen, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, Yuan Xie. “Characterizing and Understanding GCNs on GPU.” IEEE Computer Architecture Letters (IEEE CAL), 2020.

会议文章:

[1] [HPCA 2020/CCF A] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, Yuan Xie. “HyGCN: A GCN Accelerator with Hybrid Architecture.” 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE, 2020.

[2] [MICRO 2019/CCF A] Mingyu Yan, Xing Hu, Shuangchen Li, Abanti Basak, Han Li, Xin Ma, Itir Akgun, Yujing Feng, Peng Gu, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, Yuan Xie. “Alleviating Irregularity in Graph Analytics Acceleration: a Hardware/Software Co-Design Approach.” Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), ACM, 2019.

[3] [DAC 2024/CCF A] Runzhen Xue, Mingyu Yan*, Dengke Han, Yihan Teng, Zhimin Tang, Xiaochun Ye, Dongrui Fan. “GDR-HGNN: A Heterogeneous Graph Neural Networks Accelerator Frontend with Graph Decoupling and Recoupling.” 2024 61st ACM/IEEE Design Automation Conference (DAC), ACM/IEEE, 2024.

[4] [DAC 2023/CCF A] Duo Wang, Mingyu Yan*, Xin Liu, Mo Zou, Tianyu Liu, Wenming Li, Xiaochun Ye, Dongrui Fan. “A High-accurate Multi-objective Exploration Framework for Design Space of CPU.” 2023 60th ACM/IEEE Design Automation Conference (DAC), ACM/IEEE, 2023.

[5] [DAC 2022/CCF A] Haiyang Lin, Mingyu Yan*, Duo Wang, Mo Zou, Fengbin Tu, Xiaochun Ye, Dongrui Fan, Yuan Xie. “Alleviating Datapath Conflicts and Design Centralization in Graph Analytics Acceleration.” 2022 59th ACM/IEEE Design Automation Conference (DAC), ACM/IEEE, 2022.

[6] [AAAI 2023/CCF A] Xiaocheng Yang, Mingyu Yan*, Shirui Pan, Xiaochun Ye, and Dongrui Fan. “Simple and Efficient Heterogeneous Graph Neural Network.” in AAAI Conference on Artificial Intelligence (AAAI), 2023.

[7] [IJCAI 2022/CCF A] Xin Liu, Mingyu Yan*, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui Pan, Yuan Xie. “Survey on Graph Neural Network Acceleration: An Algorithmic Perspective.” Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI), IJCAI, 2022.

[8] [ICCAD 2023/CCF B] Duo Wang, Mingyu Yan*, Yihan Teng, Dengke Han, Haoran Dang, Xiaochun Ye, Dongrui Fan. “A Transfer Learning Framework for High-Accurate Cross-Workload Design Space Exploration of CPU.” 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023.

[9] [DATE 24/CCF B] Gongjian Sun, Mingyu Yan*, Dengke Han, Runzhen Xue, Xiaochun Ye, and Dongrui Fan. “LiGNN: Accelerating GNN Training through Locality-aware Dropout.” Proceedings 2025 Design Automation and Test in Europe Conference (DATE), IEEE, 2025.

[10] [ECML-PKDD 2022/CCF B] Xin Liu, Mingyu Yan*, Shuhan Song, Zhengyang Lv, Wenming Li, Guangyu Sun, Xiaochun Ye, Dongrui Fan. “GNNSampler: Bridging the Gap between Sampling Algorithms of GNN and Hardware.” Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2022.


发明专利:

[1] 严明玉; 张志敏; 吴军; 龚健; 张浩; 孙凝晖,基于检查点的计算机的容错方法,授权号:CN107193692B

[2] 严明玉; 张浩; 姜志颖; 范东睿; 叶笑春,一种PCIe设备与主机之间的多路有序数据传输方法,授权号:CN107193766B

[3] 林海阳; 王铎; 严明玉; 邹沫; 吕征阳; 兰昊; 李文明; 叶笑春; 范东睿,一种两写两读的数据传输结构以及片上多通道交互网络,授权号:CN114968861B

[4] 严明玉; 李涵; 叶笑春; 曹华伟; 范东睿,一种面向图神经网络应用的片上存储系统及方法,授权号:CN111695685B

[5] 严明玉; 李涵; 叶笑春; 曹华伟; 范东睿,一种面向图神经网络应用的任务调度执行系统及方法,授权号:CN111694643B

[6] 李涵; 严明玉; 李文明; 叶笑春; 范东睿,一种面向图计算应用的CAM结构存储系统,授权号:CN109189994B

[7] 冯煜晶; 严明玉; 张浩; 范东睿; 叶笑春,一种数据流架构中网络数据流量不平衡的检测及调整方法,CN109120546B

[8] 李涵; 严明玉; 李文明; 叶笑春; 范东睿,一种面向多上下文粗粒度数据流结构的指令发射控制方法,授权号:CN109189477B

[9] 欧焱; 严明玉; 叶笑春; 范东睿; 张浩,芯片互联多应用有效映射方法、系统及内容寻址存储器,授权号:CN108874729B

[10] 向陶然; 严明玉; 谭旭; 叶笑春; 范东睿; 王达,一种粗粒度数据流架构中的数据复用和同步的方法、装置,授权号:CN108563446B

科研项目:

[1] 全国重点实验室创新探索项目:基于注意力机制的高维设计空间探索,项目负责人

[2] 国家自然科学基金青年项目:图神经网络处理器集群的通信结构优化研究,项目负责人

[3] 中国科学院”特助”资助项目,项目负责人

[4] 中国科学院青年创新促进会会员资助项目,项目负责人

[5] 中国科学院稳定支持基础研究领域青年团队项目:深度学习处理器的能效极限理论及应用,任务二负责人

[6] 中国科学院C类专项课题:高通量处理器关键技术课题,项目骨干

[7] 中科院先导A类专项课题:超导计算机原理样机设计与集成,项目骨干

[8] 国家重点研发计划项目课题:图计算众核处理器原型系统,项目骨干

[9] 国家自然科学基金重点项目:后E级时代的新型高能效处理器体系结构,项目骨干

[10] 国家自然科学基金面上项目:数据流众核体系结构中的数据通路优化研究,项目骨干

获奖及荣誉:

[1] 2023年 入选中国科学院青年创新促进会会员

[2] 2022年 入选中国计算学会优秀博士学位论文 (优秀博士学位论文激励计划)

[3] 2022年 入选中国计算学会青年人才发展计划

[4] 2021年 北京市科学技术奖一等奖 (技术发明奖)

[5] 2021年 入选首批中国科学院稳定支持基础研究领域青年团队

[6] 2020年 北京市普通高等学校优秀毕业生

[7] 2020年 中国科学院大学优秀毕业生

[8] 2019年 中国科学院计算技术研究所所长特别奖