刘成  副研究员  

研究方向:

所属部门:处理器芯片重点实验室

导师类别:硕导计算机系统结构

联系方式:liucheng@ict.ac.cn

个人网页:https://liu-cheng.github.io/

简       历:

2018年06月 — 至今:中国科学院计算技术研究所,副研究员

2016年12月 — 2018年06月:新加坡国立大学,计算机系,博后
2016年04月 — 2016年10月:商汤科技,FPGA高级工程师
2011年09月 — 2016年04月:香港大学,电机与电子工程系,博士
2009年09月 — 2011年03月:中国科学院计算技术研究所
2007年09月 — 2009年07月:哈尔滨工业大学,微电子学与固体电子学,硕士
2003年09月 — 2007年09月:哈尔滨工业大学,电子信息科学与技术,本科

主要论著:

期刊文章:

[1] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang, Huawei Li, Xiaowei Li, Kwang-Ting Cheng, "HyCA: A Hybrid Computing Architecture for Fault Tolerant Deep Learning", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2021

[2] Dawen Xu, Meng He, Cheng Liu*, Ying Wang, Long Cheng, Huawei Li, Xiaowei Li, Kwang-Ting Cheng, "R2F: A Remote Retraining Framework for AIoT Processors with Computing Errors", IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 2021

[3] Dawen Xu, Ziyang Zhu, Cheng Liu*, Ying Wang, Shuang Zhao, Lei Zhang, Huaguo Liang, Huawei Li, Kwang-Ting Cheng, "Reliability Evaluation and Analysis of FPGA-based Neural Network Acceleration System", IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 2021

[4] Dawen Xu#, Cheng Liu#, Ying Wang, Kaijie Tu, Huawei Li, Bingsheng He, Lei Zhang, "Accelerating Generative Neural Networks on Unmodified Deep Learning Processors-A Software Approach,” in IEEE Transactions on Computers (TC), 2020

[5] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, Huawei Li, Dawen Xu, Xiaowei Li. "EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks", IEEE Transactions on Computers (TC), 2020. (Featured Paper of the Month)

[6] Chuangyi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xinyu Chen, Xiaofei Liao, and Hai Jin. A Survey on Graph Processing Accelerators: Challenges and Opportunities. Journal of Computer Science and Technology (JCST), 2019

[7] Ying Wang, Yin-He Han, Lei Zhang, Bin-Zhang Fu, Cheng Liu, Hua-Wei Li, and Xiaowei Li. Economizing TSV resources in 3-D network-on-chip design. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, no. 3(2015):493-506.

[8] Yin-He Han, Cheng Liu, Hang Lu, Wen-Bo Li, Lei Zhang, and Xiao-Wei Li. RevivePath: Resilient network-on-chip design through data path salvaging of router. Journal of Computer Science and Technology (JCST), 2013

会议文章:

[1] Cangyuan Li, Ying Wang*, Cheng Liu*, Shengwen Liang, Huawei Li, Xiaowei Li, "GLIST: Towards In-Storage Graph Learning", USENIX Annual Technical Conference (ATC), 2021

[2] Xiaohan Ma, Chang Si, Ying Wang, Cheng Liu, Lei Zhang, "Accelerating Neural Network Design with a NAS Processor", In The 48th IEEE/ACM International Symposium on Computer Architecture (ISCA), 2021

[3] Lei He#, Cheng Liu#, Ying Wang, Shengwen Liang, Huawei Li, Xiaowei Li, GCiM: A Near-Data Processing Accelerator for Graph Construction”,In IEEE/ACM Proceedings of Design, Automation Conference (DAC), 2021

[4] Yuquan He, Ying Wang*, Cheng Liu*, Lei Zhang, "PicoVO: A Lightweight RGB-D Visual Odometry Targeting Resource-Constrained IoT Devices", In The 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

[5] Mengdi Wang, Bing Li, Ying Wang, Cheng Liu, Lei Zhang, “MT-DLA: An Efficient Multi-Task Deep Learning Accelerator Design,” in IEEE GLVLSI, 2021.(Best Paper Award)

[6] Xiandong Zhao, Ying Wang, Cheng Liu, Cong Shi, Lei Zhang, “BitPruner: Network Pruning for Bit-Serial Accelerators”, In IEEE/ACM Proceedings of Design, Automation Conference (DAC), 2020

[7] Dawen Xu, Cheng Chu, Qianlong Wang, Cheng Liu*, Ying Wang, Lei Zhang, Huaguo Liang and Kwang-Ting Tim Cheng, “A Hybrid Computing Architecture for Fault-tolerant Deep Learning Accelerators”, The 38th IEEE International Conference on Computer Design (ICCD), October, 2020

[8] Shengwen Liang#, Cheng Liu#, Ying Wang, Huawei Li, Xiaowei Li, DeepBurning-GL: an Automated Framework for Generating Graph Neural Network Accelerators, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November, 2020

[9] Cheng Liu, Xinyu Chen, Bingsheng He, Ying Wang, Xiaofei Liao, Lei Zhang, “OBFS: OpenCL Based BFS Optimization on Software Programmable FPGAs”, In 2019 International Conference on Field Programmable Technology (FPT), Dec 11-13, 2019

[10] Shengwen Liang, Ying Wang, Cheng Liu, Huawei Li and Xiaowei Li, “InS-DLA: An In-SSD Deep Learning Accelerator for Near-Data Processing”, The International Conference on Field-Programmable Logic and Applications (FPL), Sep 9-11, 2019

[11] Dawen Xu, Kaijie Tu, Ying Wang, Cheng Liu, Bingsheng He, and Huawei Li. “FCN-engine: accelerating deconvolutional layers in classic CNN processors”. In Proceedings of the International Conference on Computer-Aided Design (ICCAD), p.22. ACM, 2018

[12] Cheng Liu, Ho-Cheung Ng, and Hayden Kwok-Hay So. “QuickDough: a rapid FPGA loop accelerator design framework using soft CGRA overlay”. In 2015 International Conference on Field Programmable Technology (FPT), pp. 56-63. IEEE, 2015.

科研项目:

[1] 国家自然科学基金面上项目,面向深度学习处理器的弹性容错技术研究,2022/1-2025/12,项目负责人 

[2] 国家自然科学青年基金项目,基于FPGA的专用高能效图计算加速研究,2020/1-2022/12,项目负责人 

[3] 计算机体系结构国家重点实验室重点支持课题,容错深度学习处理器的自动化设计, 2021/6-2022/12, 项目负责人 

[4] 中国科学院,STS计划项目,超微智能计算机,2019/1-2019/12,主要参与人 

[5] 中国科学院,先导C子项目,开源智能物端处理器,2020/1-2021/12,主要参与人 

[6] 华为,基于智能网卡与智能存储设备的流式计算系统研究,2020/6-2021/12,主要参与人 

获奖及荣誉:

中国科学院科技成果转化奖特等奖,2019年
CCF集成电路设计专业组委员