简 历:
2018年06月 — 至今:中国科学院计算技术研究所,副研究员
2016年12月 — 2018年06月:新加坡国立大学,计算机系,博后
2016年04月 — 2016年10月:商汤科技,FPGA高级工程师
2011年09月 — 2016年04月:香港大学,电机与电子工程系,博士
2009年09月 — 2011年03月:中国科学院计算技术研究所
2007年09月 — 2009年07月:哈尔滨工业大学,微电子学与固体电子学,硕士
2003年09月 — 2007年09月:哈尔滨工业大学,电子信息科学与技术,本科
主要论著:
[1] Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design A Self-Test, Self-Diagnosis, and Self-Repair-Based Approach, Xiaowei Li, Guihai Yan, Cheng Liu, Book, Springer Nature, 2023.
[2] FPGA overlays in FPGAs for Software Programmers, Hayden Kwok-Hay So and Cheng Liu, Springer Nature, pp285–305. 2016.
期刊文章:
[1] An Energy-Efficient In-Memory Accelerator for Graph Construction and Updating. Chen, M.; Liu, C.(通信); Liang, S.; He, L.; Wang, Y.; Zhang, L.; Li, H.; and Li, X. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD). 2024.
[2] MRFI: An Open Source Multi-Resolution Fault Injection Framework for Neural Network Processing. Huang, H.; Liu, C.; Liu(通信), B.; Li, H.; and Li, X. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI). 2024
[3] Statistical Modeling of Soft Error Influence on Neural Networks. Huang, H.; Xue, X.; Liu, C.(通信); Wang, Y.; Luo, T.; Cheng, L.; Li, H.; and Li, X. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD). 2023.
[4] Accelerating Deformable Convolution Networks with Dynamic and Irregular Memory Accesses. Chu, C.; Liu, C.(通信); Xu, D.; Wang, Y.; Luo, T.; Li, H.; and Li, X. ACM Transactions on Design Automation of Electronic Systems (TODAES), 28(4): 1–23. 2023.
[5] PDG: A Prefetcher for Dynamic Graph Updating. Zhang, X.; Liu, C.(通信); Ni, J.; Cheng, Y.; Zhang, L.; Li, H.; and Li, X. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),1–14. 2023
[6] Exploring Winograd convolution for cost-effective neural network fault tolerance. Xue, X.; Liu, C.; Liu(通信), B.; Huang, H.; Wang, Y.; Luo, T.; Zhang, L.; Li, H.; and Li, X. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI). 2023
[7] HyCA: A hybrid computing architecture for fault-tolerant deep learning. Liu, C.; Chu, C.; Xu, D.; Wang, Y.; Wang, Q.; Li, H.; Li, X.; and Cheng, K. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(10): 3400–3413. 2022
[8] Reliability Evaluation and Analysis of FPGA-Based Neural Network Acceleration System. Xu, D.; Zhu, Z.; Liu, C.(通信); Wang, Y.; Zhao, S.; Zhang, L.; Liang, H.; Li, H.; and Cheng, K. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI). 2021
[9] R2F: A remote retraining framework for AIoT processors with computing errors. Xu, D.; He, M.; Liu, C.(通信); Wang, Y.; Cheng, L.; Li, H.; Li, X.; and Cheng, K. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI), 29(11): 1955–1966. 2021.
[10] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, Huawei Li, Dawen Xu, Xiaowei Li. "EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks", IEEE Transactions on Computers (TC), 2020. (Best Paper Award)
会议文章:
[1] DRIM-ANN: An Approximate Nearest Neighbor Search Engine based on Commercial DRAM-PIMs, Mingkai Chen, Tianhua Han, Cheng Liu (通信), Shengwen Liang, Kuai Yu, Lei Dai, Ziming Yuan, Ying Wang, Lei Zhang, Huawei Li, Xiaowei Li, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2025.
[2] Graphitron: A Domain Specific Language for FPGA-based Graph Processing Accelerator Generation. Xinmiao Zhang, Feng, Zhen, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu (通信), The 26th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES). 2025
[3] FrontOrder: Frontier-guided Graph Reordering. Xinmiao Zhang, Cheng Liu (通信), Shengwen Liang, Chengwei Xiong, Yu Zhang, Lei Zhang; Huawei Li, and Xiaowei Li, IEEE International Conference on Data Engineering (ICDE), 2025.
[4] NeuVSA: A Unified and Efficient Accelerator for Neural Vector Search. Yuan, Z.; Dai, L.; Li, W.; Zhang, J.; Wang, Y.; Liu, C.; Li, H.; Li, X.; Guo, J.; Wang, P.; Chen, R.; and Zhang, G. The 31st IEEE International Symposium on High-Performance Computer Architecture (HPCA). 2025
[5] LUT-DLA: Lookup Table as Efficient Extreme Low-Bit Deep Learning Accelerator. Li, G.; Chen, C.; Ye, S.; Wang, Y.; Yang, F.; Cao, T.; Aly, M. M. S.; Liu, C.; and Yang, M. The 31st IEEE International Symposium on High-Performance Computer Architecture (HPCA). 2025.
[6]TaijiGraph: An Out-of-core Graph Processing System Enhanced with Computational Storage. Zhang, X.; Liu, C.(通信); Liang, S.; So, H. K.; Wang, Y.; Zhang, L.; Li, H.; and Li, X. The 39th IEEE International Parallel & Distributed Processing Symposium (IPDPS). 2025.
[7] HLSPilot: LLM-based High-Level Synthesis. Xiong, C.; Liu, C.(通信); Li, H.; and Li, X. In 2024 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–9, 2024
[8]DeepBurning-MixQ: An Open Source Mixed-Precision Neural Network Accelerator Design Framework for FPGAs. Luo, E.; Huang, H.; Liu, C.(通信); Li, G.; Yang, B.; Wang, Y.; Li, H.; and Li, X. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 1–9, 2023. IEEE
[9] Winograd convolution: A perspective from fault tolerance. Xue, X.; Huang, H.; Liu, C.(通信); Luo, T.; Zhang, L.; and Wang, Y. In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC), pages 853–858, 2022.
[10] GLIST: Towards In-storage Graph Learning. Li, C.; Wang, Y.; Liu, C.(通信); Liang, S.; Li, H.; and Li, X. In 2021 USENIX Annual Technical Conference (ATC), pages 225–238, 2021
科研项目:
[1]中科院先导B课题:处理器芯片跨层协同设计的软硬件平台,2024-2028,负责人;
[2]国家自然科学基金面上项目:面向深度学习处理器的弹性容错技术研究,2022/1-2025/12,负责人
[3]国家自然科学青年基金项目:基于FPGA的专用高能效图计算加速研究,2020/1-2022/12,负责人
[4]国家重点研发计划子课题:领域专用处理器的跨层设计空间探索,2023-2025负责人
[5]计算所算力专项:面向集成电路多模态数据的表示与应用研究,2025-2026,负责人
[6]处理器芯片重点实验室培育课题,自动化软硬件划分,2025-2026,负责人
[7] 北京控制工程研究所:面向COTS芯片的容错深度学习工具链研究,2022-2023,负责人
[8]中国空间技术研究院:面向遥感图像识别的人工智能微系统智能算法评测基准开发,2023-2024,负责人
[9]中国科学院先导C子项目,开源智能物端处理器,2020/1-2021/12,参与人
[10]华为,基于智能网卡与智能存储设备的流式计算系统研究,2020/6-2021/12,参与人
获奖及荣誉:
华为奥林帕斯先锋奖,2024年
中国科学院科技成果转化奖特等奖,2019年
IEEE Transactions on Emerging Topics in Computing, Associate Editor, 2024-至今
IEEE Senior Member, CCF Senior Member, ACM Member
DAC、FPT、DFTS、ICML、NeurIPS、TC、TPDS、TVLSI等会议和期刊的审稿人
刘成 副研究员
研究方向:专用硬件加速;AI4EDA;容错计算
所属部门:处理器芯片重点实验室
导师类别:硕导计算机系统结构
联系方式:liucheng@ict.ac.cn
个人网页:https://liu-cheng.github.io/